’ UTATION OF as IC PROPERTIES FROM THE MEDIAL
- RAX1S TRANSFORM IN ¢.. CU) MARYLAND UNIY COLLEGE PARK
CENTER FOR RUTOMATION RESEARCH R ¥ NU ET AL. JUN 83

CAR-TR-122 AFOSR-TR-83-061,

F/G 12/1

pze =
wiz 2

=
e =

* e

L28 i pue .

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST GMART

. « CAR-TR-122 F -19620-83 -C- 008"
CS-TR-1497 June 1985

COMPUTATION OF GEOMETRIC PROPERTIES
FROM THE MEDIAL AXIS TRANSFORM
IN O (nlogn) TIME
Angela Y. Wu
Department of Mathematics.
Statistics, and Computer Science
The American University
Washington, DC 20016
S.K. Bhaskar
Aznel Rosenfleld

LY
. - e

- 4t

L CAR—TR—I?‘.Z,- F-49620-83-C~0082
CS-TR-1497 June 1985

COMPUTATION OF GEOMETRIC PROPERTIES
FROM THE MEDIAL AXIS TRANSFORM
IN O(nlogn) TIME

Angela Y. Wu

Department of Mathematics,
Statistics, and Computer Science
The American University
Washington, DC 20016

S.K. Bhaskar
Azriel Rosenfeld
Center for Automation Research

University of Maryland
College Park, MD 20742

ABSTRACT

The digital medial axis transform (MAT) represents an| image subset S as the un-
ion of maximal upright squares contained in S. Brute-forge algorithms for computing
geometric properties of S from its MAT require time O (n?), where n is the number of
squares. Over the past few years, however, algorithms have been developed that com-
pute properties for a union of upright rectangles in time O (nlogn), which makes the
use of the MAT much more attractive. We reviewsthese algorithms and also present
efficient algorithms for computing union-of-rectangle representations of derived sets (un-
ion, intersection, complement) and for conversion between the union of rectangles and
other representations of a subset.

AIR FORCE 0F&T AR 01 SOTYRTTIFIC REST S ~uraugmy
NI LS) T -

This .

Diocte oL

MATTALL J.F

Chict, Tuchicol Iulornntion Division

The support of the US Air Force Office of Scientific Research under Contract
F-49620-83-C-0082 is gratefully acknowledged, as is the help of Sandra
German in preparing this report. o

Tl

DISTRIBUTIO 0 7
Approved fur public releasel
Distribution Unlimited

EhACHEE : P iy Rt A I e Sl 2 el DA AR avh ot GNEY s L auh

" Unclassitied N oo

T S M Shue A Bt Soes e ooy S Bl &g <

> p e’

Yy e ¢ ¢
SECUR:TY CLASSIFICATION OF T+1§ PAGE ///) f// 2 - / ——
' REPORT DOCUMENTATION PAGE
e REPOAT SECURITY CLASSIFICATION ib. RESTRICTIVE MARKINGS
Unclassified N/A -
e SECLAITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/AVAILABILITY OF REPOAT
o8 -
N/A Approved for public release; distribution
76 DECLASSIFICATION/DOWNGRADING SCHEQULE unl imited
N/A
e PERFCAMING ORGANIZATION REPORT NUMBENR(S) 5. MON.TORING ORGANIZATION REPORT NUMBEA(S)
CAR-TR-122 o N
0S-TR-1497 AFOSR-TR- 05-0616
68 NAME OF PERFOAMING ORGANIZATION b. OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION
(1 epplicabdie) ., 3
Air Force Office of Scientific Research
University of Marvland N/A
LRI A c o ZIP Code) 75. AQORESS (City State and 71P Code:
Crnter tor Automation Research 1
College Park, MD 20742 Bolling Air Force Base
g * ! Washington, DC 20332
33 NMAME OF ;ur«Smc.spor«soan 8o OFFICE SYMBOL 8 PROCUREMENT INSTRUMENT 1DIr* T8 CAT.ON NLMBE R
i TNIZATION tIf applcebdie:
AFQSR NM F49620-83-C-0082
8 #DDRESS (City. dtate and ZIP Coae) 10 SOURCE OF FUNDING NOS
PRAQGAAM PROJECT TASK WCAK UNIT
B]dg: 410 ELEMENT NO NO nNO « NO
Bolling AFB, D.C. 20332-6448
- 61102F 2304 K2
CoRTht 424 St g Soue "z"'i"c"'gropertles from the
.ﬁeahu axis transrorm in 0O(n loen) time
12 PFASONAL AUTHOA(S)
Angela Y. Wu, S. K. Bhaskar, Azxiel Rosgenfeld S p— |
EFETIT 136 (IME COVEREDN /A 14 DATE O- REPORT (Yr Mo . Day, 15 PAGE F =Nt
o cn ‘to June 1985 37
echnical oM
» Svriu Tt CITAf JTATION
17 COSATI CODES 18 SUBJECT TERMS (Conlinue on reverse if necessary end (dentify by diock Aumder:
£I1ELD GROUP SUS GR)
‘A ABSTRACT (Continue on reverse (f necessary and (danti/y dy block number)

The digital medial axis transform (MAT) represents an image subset S as the union
of maximal upright squares contained in S. Bryte-force algorithms for computing geometric
properties of S from its MAT require time O (n“), where n is the number of squares. Over
the past few vears, however, algorithms have been developed that compute properties for a

P) P p prop
union of upright retangles in time 0 (n logn), which makes the use of the MAT much more
attractive. We review these algorithms and also present efficient algorithms for computing
g P g £
union-of-retangle representations of derived sets (union, intersection, complement) and
for conversion between the union of rectangles and other representations of a subset.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED (B same as aer O pric usens OO Unclassified
228 “:3ME OF RESPONSIBLE INOIVIDUAL 220 TELEPHONE NUMBER 22c OFF '~ SvmMaCL
tinclude Ares Code)
Or. Robert N. Buchal (202)767-4939 NM
. OD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE I'nelacssfied

SECURITY CLASSIFICATION OF TriS PAGE

1. Introduction

The medial axis transform (MAT) of a set S was first introduced by Blum

(1]. The MAT can be defined as the set of centers and radii of the maximal disks

that are contained in S. The ‘‘disks’’ can be of any desired standard shape. For

example, if S is a subset of a digital image, it is convenient to use upright

squares of odd side length as ‘‘disks”. The original set is just the union of these

locally maximal squares.

In general, the squares overlap and the number of squares, say n, in the

MAT of a region is large. If brute-force algorithms are used, using the MAT to

calculate geometric properties of a region requires O (n?) computation, which can

be quite large. For this reason, it has been concluded (2| that the MAT is not a

very good region representation.

The purpose of this paper is to show that the MAT is not such an unattrac-

tive region representation. In the geometric complexity literature over the past

few years, many algorithms have been published that compute geometric proper-

ties for regions represented as union of upright rectangles in O(n log n) time.

(An upright, “'rectilinear”, or ‘‘iso-oriented" rectangle is a rectangle whose sides

are parallel to the coordinate axes.) Clearlv, a MAT is a special case of this

representation where all the rectangies are squares and have odd side lengths.

We will review and discuss algorithms that find the boundary and compute the

perimeter, identify the connected components, and find the area and other

moments of a union of upright rectanzles.

Nttt O R T T T P T N P G
Cap L4 e T e . LR e
At s s N N o PPN S PN ISP PPN

Section 2 introduces the segment tree (3| which is the basic data structure
used in the algorithms. Section 3 discusses two algorithms [4,5] that find the
boundaries and perimeter of a region. In Section 4, we discuss the connected
component algorithm of (6], which uses a priority search tree {7]. We also present
an algorithm to solve the connected component problem using the segment tree
instead of the priority search tree. Our algorithm has the same time and space
complexity as the algorithm in [6]. Section 5 describes an algorithm given in [9]
to find the area. We also show how to extend the algorithm of [7] to find the

centroid and other moments of the region.

A set can be the result of performing set-theoretic operations on given sets.
Section 6 presents algorithms to compute union of rectangle representations for
such derived sets, directly from the representations of the given sets. Conversion

between unions of rectangles and other representations is discussed in Section 7.

Another approach to speeding up computation based on the MAT is to aug-
ment it with additional information. Ahuja and Hoff in [12] introduce an aug-
mented MAT, or AMAT; it makes use of a graph structure in which overlapping
squares are joined by arcs. This graph structure takes O (n log n) time to build.
They observe that if the average number of neighbors per square in the AMAT is
a. most O (n?) computations can be performed in O (a n) time. In the reported
examples, o varied from 8.3 to 21.9, but this was after pruninc the MAT to elim-

inate many redundant squares. The methods described in this paper take

O (n log n) time, but do not require storage of the graph structure.

Ihe 4

2. Segment Trees

The segment tree, introduced in (3], is a useful data structure in many of the

algorithms which solve geometric problems involving a union of iso-oriented rec-
tangles using the line sweep method. A segment tree is a special binary tree

which allows fast insertions and deletions of line segments when the tree

N A e g e

represents line intervals.

Let [a, b] be any interval with b-a > 1 and for simplicity, let the end-
points be integers. The segment tree T (a, 6) is defined as follows: T (a, &) has

a root v, with L(v)=a and R(v)=05, representing interval [a,b]. If

b-a > 1 then v has a leftson T (e, La

+bJ) and a rightson T (ath

b-a =1 then leftson(v) = rightson(v) = null. An interval [c,d]|C[a,b] is
represented on T (a, b) by a set of marked nodes consisting of the first node v
on each of the paths from the root of T (a, b) such that [L(v), R (v)]C[c. d].
i.e., [L (parent(v)), R (parent(v))] € [c, d]. See Figure 1 for an example. It is
clear that for each [c, d], the children of a node cannot both be marked and at
each level of the tree there are at most two marked rodes. Since T [a, b] has
height 1 + [log, k] where k = b-a +1, an interval [c, d] is represented by
<2#(1+[log, #]) = O(log, k) nodes. A set of m intervals can be represented
in T[a.b] by appending to each tree node the list of intervals which mark the

node. Hence a segment tree Tla,a+k-1] with m intervals needs

O (k+m log, k) space and O (k+m log, k) time to be built.

. —T., ..

VEERY ¢ v Lt te s

ST

R

Figure 1: The segment tree T (1,8) of the interval [1,8]
The starred nodes resent the interval {2,7] on T [1,8]

Node@is empty, is full and is partial.

To insert (or delete) an interval segment, find the corresponding marked
nodes and add (or delete) the segment from each node’s interval list. Since every
node's interval list is no longer then m, insertion or deletion can be done in
O (t log, k) time if ¢ is the time required to insert (or delete) an element from
an interval list of size <m. In general ¢ = log, m if a balanced binary search
tree is used when m is large. In some algorithms, ¢ is a constant. For example,
if one only needs to know how many segments marked a node, then the interval
list is simply an integer value which is incremented or decremented. In this case
the space needed to store T is linear.

Given T (a,b) and an interval [c,d|C[a, 0], each node veT(a.b) is

classified as being (i) empty if [c,d])[L(v). R(v)] is empty. (u) full if

[L (v}, R(v)]C[c.d] and (:i7) partial, if it is neither empty nor full. See Figure

1. Given a set of intervals, a node v is empty (or full) if and only if it is empty

(or full) with respect to all the intervals.
All the line sweep algorithms in the following sections use the basic segment

tree or some variation of it to organize the necessary information, for easy inser-

tion and deletion of appropriate interval segments.

Accession For

NTIS GRA&I ‘
P DTLC TAB

Unannouneed O
Just ification |
By.

Distribution/

e ————

Avai‘labil ity Codes
Avall and/or |
Dist Special

b

/

T T T T T— LR 2 ARl - e Sy S Sancinter Bt St i e, JotuCil in S A i add . da) L W W s ETAT AN T L TATS

3. Boundaries and Perimeters

The union of a set of n rectangles consists of one or more connected regions.
Its contour consists of a collection of disjoint cycles, composed alternately of vert-
ical and horizontal edges, which specifies the outer boundaries as well as the
holes, if any, of the region. See Figure 2. The algorithms in this section can be
used to find the boundaries and perimeter of the region from its medial axis

transform.

a b
S q P C d e
r o} i J
t h g
n
f
v k
u m |

Figure 2: The contour is the set of two cycles: {abdefkimutsqa, onhio }.

The algorithm in [4] determines the contour in two phases: the first finds all
the vertical edges and the second links them with horizontal edges. The first

phase uses a vertical scan line which sweeps from left to right. The horizontal

edges of the rectangles divide the vertical scan lin~ into a number of interval seg-

e o e T T e N e e Ty e L L L N N T T N W N T Y T Y T T T YT

ments. If I is the set of such vertical intervals just before (or after) some vertical
left (or right) edge E of a rectangle, then the contribution of E to the contour of
the region is I’ﬁE where I’ is the complement of I. For example, in Figure 2,
just before edge ar,] ={st,tu} and I'M{ar }={ag}; just after edge
pm, I = {ar,mn} and I'M{pm }={on }. A segment tree is used to determine
I’ﬂE. First, the y-coordinates of the horizontal edges are sorted and mapped
onto {1, ..., m} (m <2n) where each horizontal edge (determined by its y-
coordinate) is associated with its position in the sorted list. A segment tree
T (1,m) is built. When the vertical scan line sweeps from left to right, and a left
edge is encountered, the y-coordinates of its two endpoiﬁts are mapped into
{1r...., m} and the segment is inserted into T (1,m). Similarly, a right edge is
deleted from T (1,m). Note that at each node in T, only a count of the number
of times it was marked needs to be maintained. This value is increased or
decreased as the node is marked or unmarked. The union of the nodes with
nonzero counts represents the interval I. For each node v in T, if CONTR (v)
denotes [L (v), R (v)]M{’, then

@ if v is full or there is an ancestor u of v such that u is full

CONTR (v) = [L(v). R(v)]if v is empty

CONTR (LEFTCHILD(v))U CONTR (RIGHTCHILD(v))
if v is partial.

Therefore EMI' = | JCONTR (v) where S is the set of O (log, m) nodes
veS

representing the edge £ in T. The edge(s) obtained from E (I’ in general are
M

unions of segments. They must be processed, i.e.. contiguous intervals must be

A T N oy Ny Ty = D e et et Sy S IR A SR dines et A

collated.

Once the vertical edges are found, the horizontal edges can easily be deter-
mined. Basically the set of endpoints of the vertical edges is sorted in ascending
order of the y-coordinates, and then in ascending order of the z-coordinates if
two points have the same y-coordinate. In the sorted list
(z vy (Zoya)(zaya), 0 ¥oiy=1yy for 1 21. Then (z9;_;.¥9;1) 2nd
(29, ¥9;) are the endpoints of a horizonta! edge.

We can assign directions to the edges consistently so that we can determine
if a cycle represents the outer boundary or a hole by observing the direction at
some ext'eme (say, south-west) corner of a cycle. The direction of a vertical edge
is “up” if it arises from a left edge of a rectangle, and “down” otherwise. This
can easily be done when the edge is identifed. In phase two, if at each endpoint
(z.y) of a vertical edge, the direction d of the vertical edge and the y-

coordinate y’ of the cther end of the vertical edge are also recorded, then the
horizontal edge {(za;_1,¥0;_1)(T2;+¥2i))+ 1€y Y2,y = ¥o;. has direction (from
left to) right if d,;_; is down and yo;_; < y's; ;. or if d,;_, is up and
Yar1 < y'si_1. Otherwise the horizontal edge has direction (from right to) left.

If the contour has p edges, the above algorithm uses

o 2

O(n log n+p log) time and O (n +p) space.

In [5], an additional data structure called the contracted segment tree is used
to improve the time complexity to O(n log n + p). To find the vertical edges.

one needs to compute the contribution of rectangle edge e¢. First the segment

. R e e e S e e e D T TN B B -
et et e e e . S e e e e Ta s AN R R I R T ~" -
........ . . - . S e <.

----------------- -

. LRSI e ettt e e e e T T e s T ST e T e e e
LR S S ST Wl TN Syl W e, W S N .‘—:AA.A‘-L“A.‘_‘M’ PPN WS WO WS WU WL I U v Y v W e A oo

—— MARREA Benbe Jacis Mo MbaaCmats S ga-mad ta oy 4 g g (aat n D gardn A e b S aatua e 2 CHANCA s e a4 - . P - v

tree nodes which represent the y-interval of e are located. But if some of these
nodes or their ancestors are full with respect to the segments already in the tree,
their contribution to Eﬂ]’ is empty. Thus we need to find only those parts of
the segment tree which are “‘free” with respect to the segment being added. This
is done in [4] by traversing the subtree of the relevant nodes, and not reporting
the FULL nodes. In [5], the “free” parts in the subtree of a node are attached to
the node as another segment tree, the contracted segment tree, which stores only
the “‘gaps’ in the subtee rooted at that node. This allows us to report the gaps
in O («) time where a is the number of gaps in the subtee at the given node, and
thus yields an optimal time algorithm.

Clearly, the contour algorithm can be easily modified and simplified to find
the perimeter which equals the total length of the borders of the regions. It also
gives us the number of connected components in the union (just count the

number of outer borders).

PN e . . . el e e s PO - - . . T
e e LT e T LT e e e e e et e e e e e e L e LI A AN

R L IPUE LA T N N e T Y LT TR AR L
Lt e ta e e e ate e T Se % e % L0 ® atarae IR IPAC DAL WA AP IR IPRL DAL IDRTIINE TN SPUL IS TP TP PRI, T T T R P e i

7. Conversion between representations

A subset can be specified using various representations other than a union of
rectangles. For example, it can be specified by the boundaries of its regions, by
its run length code, or by its quadtree [2]. This section discusses conversion of
the union-of-rectangles representation to and from the boundary and rua length
representations. Given a quadtree, its set of (black) leaf nodes is a (non-minimal)
union-of-rectangles representation. Conversely, given even a single rectangle,
depending on its position, the corresponding quadtree can have O (image diame-
ter) leaves. We will not discuss conversion between quadtrees and unions of rec-

tangles in detail here.

7.1. Boundaries

The algorithm in Section 3 finds the boundaries of a subset from its
representation by a set of rectangles. The outer boundaries, given by the (z.y)
coordinates of the vertices, are specified in one direction (clockwise), and the
holes are specified in the opposite direction (counterclockwise).

Suppose the corners (vertices) of the contours (boundaries) of a subset are
given using the above convention. We first consider the following simple algo-
rithm to find a set of rectangles whose union is the subset.

1. The vertices of the boundary are sorted in increasing order. Let
uy < uy < - - < u, be the distinct z-coordinates. We will use a verti-

cal sweepline which stops at each u, (1 <5 < m).

23

e T T Y Y T Y N T T Y N AT e T AT N T W~ - a ‘_’

Q4

G2

Qs

N

Qﬂz

N\

\
\
N\
.

.........

ny flg
Figure 8: Regions S, = U Pi» Sao= | @j- The P;’s are disjoint, the
P=1 =1
Q; 's are disjoint, and S () S2 is the union of n, n, disjoint rectan-

gles.

rectangles whose union is the complement. In fact, the sorting step in the algo-
rithm need not be performed since it can be done in stage 1. The time complex-
ity of stage 2 is thus O(p log k) where & is the number of horizontal edges a
vertical sweep line can cross. The complement can be found in

O(nlogn + p logh)time, where p < n%?and h < n.

22

by intersecting each P; in S, with each @, in S,. This takes O(n, n,) time
and the intersection has a maximum of n, n, rectangles. Figure 8 shows tHe
case where S| (M) S, has n; n, disjoint rectangles, and each P; intersects every
Q;; in this case it takes O(n,n,) time to find the intersection. One can
improve the efficiency by first sorting the rectangle vertices in increasing (z, y)
order: sorted list L, for the. P;’s and sorted list L, for the @;’s. Now one can
go down list L, and for each rectangle P;, one only needs to intersect it with
those Q; which fall in the range of P;. Of course, in the worst case (as the
example in Figure 8 shows), this still takes O (n| n,) time. In fact any algorithm

would need to take at least O (n n,) time for the sets shown in Figure 8.

We find that the segment tree is not particularly useful for this problem. In
order to produce the rectangles in the intersection, one needs to know not only
the active segments at each stopping position of the scan line, but also the z-
coordinate of the left edge which makes the segment active. Moreover, to search
for the @;’s which intersect a vertical edge of P; may entail searching the entire

subtree of the node corresponding to that vertical segment. Again, the sets

shown in Figure 8 would cause this to happen.

The complement of a set of n rectangles with respect to an enclosing outer
rectangle can be found in two stages. First we can use the O (n log n + p) algo-
rithm in Section 4 to find the contour of the region; p is the number of edges in
the contour. The contour of the complement is this contour with all edge direc-
tions reversed, together with the outer rectangle. Then we can use the boundary

to union-of-rectangles conversion algorithm in Section 7.1 to get a set of

21

8. MATSs of derived sets

The algorithms in the previous sections show that geometric properties can
be computed from MATs quite efficiently. This section discusses algorithms for
obtaining MAT representations for subsets derived from given subsets by set-
theoretic operations such as union, intersection, complement and windowing,
where the given subsets are represented by MATSs. Since it is well-known that
the problem of finding minimal rectangle covers for polygons is NP-hard (10}, the .
problem of minimizing the numbers of rectangles in the MAT representations of

the derived sets is not discussed.

First we consider the problem of windowing. Given a region represented by
a set of m upright rectangles and a rectangular window, it is easy to find that
part of the region which is inside the window. Since the intersection of two
upright rectangles is either empty or another upright rectangle, one can find the
intersection of vne window with each of the n given rectangles and report all of

the non-empty intersections. Thus windowing is a linear-time operation.

Given two sets of rectangles, each representing a region, the set union of
these two sets represents the union of the two regions. Of course, the resulting
set of rectangles is in general not minimal. Note that in the case where the two

given regions are disjoint, the union of the sets of -ectangles is the best one can

do.

The intersection of two regions S} = (J P; and S, = U @

P, @Q; are upright rectangles, S, M S:= U

20

. L L e P . . PP S S e et e > I
EIATE - . s e e e e RN RPN M R “ R T e T DR N . .
A A A Tt e B T T i N P
e a et . et tlatatatalalata i atal A A a0 o MR PSS PSR DU WL W R R W N T Y T AT SO S SR M S W SR L i AT -

v—

[[zk dz dy
Fl

o Vg Us Vg Uy Vs Ug | Vs Vg
=[[z*dedy + [[z¥drdy + [[zFdzdy + [|fz"da dy + [zt dz dy
u, vs Ua Vg Usg v, Uye |V, Vs
Ug Vg Uy Ve Ug Vy
+ff1:"dzdy+ff:r"dxdy+ffx"dzdy
Ug Uy Uy ¥, Uy Vg
k-1 k+1 k+1 k+1 k+1 k+1
= - + Vg—v3) + Ug— v
k+1 (v7-vy) k+1 (vg 3) k+1 (ve 1)
k+1 k+1 k+1 k+1
u5 —u4 [] us —u5
- -v + Vg~ U
+ P (vy-vy) + (vg-vs) P (vg-vy)
k+1 k+1 k+1 k+1
U7 —us Ug —u7
- Vg— Vo).
+ o1 (ve-vy) + P (ve-vo)
"ik++ll“ u,k+l
M = ~——M (i), where M (i) is the one-dimensional measure of

1<i<8 k+1

the active region between u; and u; .,. Since M () is obtained as before and the

u; are known, we can evaluate the required integral. The integral ff y* dr dy
A

can be evaluated by rotating the figure by 90° and evaluating [[z* dz dy.
‘ A

The integral [[z dz dy can be evaluated concurrently with [[dz dy, and thus
A .

the moments can be obtained in the same time complexity as the area.

19

.............
......
..............

A Tl 4 i S -

R

»

-

-

1

K4
.

known, and the M (i) are evaluated as described above. Thus, [z dz dy can
A

be determined in time O(n logn). [[dz dy is the area of the region. ¥ may
A

be obtained in the same way, rotating the axes by 90°.
The moment of inertia about the origin is given by
[+ 3y ds dy = [[z%dz dy + [f y® dz dy.
A A A
I In general, the problem of evaluating the moments is one of evaluating integrals

of the form {[z¥ dz dy and [f y* dz dy. For example, if A is the region
A A

defined by the union of the rectangles in Figure 7, then
V8 _______
i V7 -
g Ve~ |~~~ B I
. Ve__|____
- 3]]
1)
-, 1 1
. ']
~ Vg-- I :
X h '
P V _ {
- 3 ' ' ' :
o] :
Voot bovo oo !
o 2 | :- [} | | [}
) ! | | ' b
| 1 1]) 1
Viaoboo--L__ L] ! 1
1 ! o] 1| |
t [}] [| [[|}
» U1 U2 UsUq Us UgUy Us

Figure 7. lllustration of moment computation.

v T eTaT e T
-'uJ' -"-'A'a

b B st 'I
RO

18

.1\ LY

'.A :"

.........................

When inserting an interval segment into the tree, instead of simply marking the
nodes as in Section 2, we mark all the nodes of the 1-umbreila of that segment.
At each node of the segment tree, the following two values are maintained: (1) a
count of the number of times it figures as a full node of some umbrella, and /2)
the total length of the fragments in its subtree which are covered by 1-umbrellas
through it or below it. The value of the second field at the root gives M; at scan
position u;. Deletion of a segment updates the above values too. We need the
count field (1) because a given node can belong to several umbrellas. Since each
partial sum can be found in O(log n) time, the area can be determined in

O (n log n) time and the segment tree only needs O (n) space for n rectangles.

In the rest of this section, we use the segment tree with 1-umbrellas to deter-

mine the moments of the region.

The centroid (or center of gravity) (T, ¥) of a region A is given by

./(fIP(x,y)d-‘r dy JfvPiz,y)dz dy
= - A

y Y
f[P(z.y)dz dy JP(z,y)dz dy
A A
where P(z,y) is the density at point (z,y). If we assume uniform density

throughout, then

[z dz dy v dz dy
- A — A
Ii= —mmmm |, = —mm8—
[[dz dy [[dz dy
A A

We can find these incrementally at each stop position u,; of the vertical scan line

(ui,-uw;H)M (i). The u, are

lol"‘

by observing that ff z dz dy = h»
A 1<i <k-1

17

...

tained in the interval ¢ represents, and ¢ 1s not contained in t’'s leftchild or
rightchild. In other words, [v,, v;| is split at ¢ where the beginning part of it
goes to t's left subtree and the rest goes to ¢'s right subtree. Let Ltip, Rtip be
the leftmost (rightmost) marked node for ¢ in the left (right) subtree of ¢, l.e.,
L (Ltip)=v;, R (Rtip)=v,. Ltip, Rtip are full with respect to ¢.

The 1-umbrella of a segment [v;, v;] consists of the node ¢ as defined above,
all nodes along the path from ¢ to Ltip and their rightchildren (if any), and all
nodes along the path from ¢ to Rtip together with their leftchildren (if any). See
Figure 6. Since an [-umbreila has at most four nodes at each level, it has at

most O (log n) nodes for any segment and it can be built in O (log n) steps.

T(1,1)

k.
Y.
:

£y

R tip
L tip

RR AN

Figure 6. A l-umbrella of a segment [v,, v,]. Here [v,, v, JC[L(t), R(t)]
but each child of ¢ contains a portion of (v,, v;].

S AL

. -y
..'-f‘f. ..

NI

P p——— AN N A A S el el g el et el g g o L i onac e e ToTTT T

5. Area and moments

The area (or measure) of a set of m rectilinear rectangles is the area covered
by (= the number of pixels in) their union. The area together with the perime-
ter (see Section 3) gives us information about the compactness of the region. The
measure problem was first solved in 1 and 2 dimensions in [3], and a generalized

solution in d dimensions was presented in [9].

The algorithm to find the area in (9] uses the sweep line method and a ver-

sion of the segment tree. First the z-coordinates of the vertical edges are sorted

to get the list u,, u,, ..., u, (k<2n). The vertical scan line will be posi-
tioned at each of the u;’s. Let M; be the length of the active interval segments

when the scan line is at u,; then the area of the region M= Y M, (u; - u;).
1<y <k

Thus. to determine the total area. we need to accumulate the partial areas. For
this we need to determine the length of the active segments at each stopping
position of the scan line. The algorithm will calculate M, by applying a correc-

tion to M, .
g The y-coordinates of the horizontal lines are sorted, denoted by
{vyova, .., v}, 1 <2n. The segment tree T (1, !)is built. At each scan posi-
tion u;, 1<t <k, the active segments are marked on the segment tree together
with some information described below.
Let ¢ =(v;, v;], v; <v;be a vertical interval segment. In finding and mark-

ing the tree nodes representing [v;, v,] (see Section 2), starting from the root

node, let ¢ be the node in 7' (1, !) such that [v;, v;|C[L(¢). R(t)]. i.e., q is con-

Once we obtain the list of all such pairs, we collect pairs which have at least

one component in common, to form the connected components.

This algorithm presented in [6] determines the connected components of n

rectilinear rectangles in O (n log n) time and O (n) space.

Instead of using a priority search tree as in {5], we can use a segment tree to
keep track of the active intervals. Specifically, the y-coordinates of the horizon-
tal edges are sorted and mapped to {1,..., K}k <2n). A segment tree
T (1.k) is built. At each node we keep a count of the interval segments which
marked the node and one of its descendants (subintervals). This is similar to the
tree used in Section 3 except that here the count represents partial instead of full

nodes. When a leftside (rightside) vertical segment is inserted (deleted) that

count of all the nodes along the path from the root to the marked nodes is

increased by 1. Thus insertion and deletion can be done in O (log n) time. To

test if a given interval intersects any of the intervals in the segment tree, we

locate the tree nodes v representing the test interval, i.e., [L(v), R (v)]C test
interval. If any of the nodes has a count >0, then it has a subinterval that
intersects the test interval. Again this can be done in O (log n) time. Hence
using the segment tree we can achieve the same time (O (n log n)) and space

(O (n)) complexity as the algorithm in [6].

T P o = LI e A At s s g o

As the vertical sweep line moves from left to right passing through the rec-
tangles, both the priority search tree and the illuminator tree are updated as
required. When a new rectangle A starts in the illuminator tree we may have to

coalesce a collection ol intervals lying between the endpoints. For each interval

B being coalesced, it B intersects any of the current priority search tree inter-
3 vals, we output the pair (A, B). For example, consider Figure 5.
a
b
A ---d4c
d
e
C -——--1f
g
h
sweep line

Figure 5. Example of tree updating.

Just before the sweep line reaches edge ah, the priority search tree contains
intervals bd and eg while the illuminator tree has segments ab. bc.cf. fg. gh.
On meeting ah. we have to merge intervals ab, bc., ¢f. fg and gh to obtain the
new illuminator ah. Of the segments being coalesced. only bc. ¢f and fg share

points with bd and eg. Thus, we report pairs (A . D). (B.D)and (C.D).

13

.t a®
T, -

Al g N AN

TV
LA T

Lan 4
s

i L

»

-
'

new rectangle starts in the illuminator tree, we must do the following: (1! Locate

the two endpoints of the left side of the rectangle in the current set of intervals

and split the intervals containing the endpoints. This can be done in O (log n)

time. (2) Merge all ¢ intervals lying between the two endpoints, because in these

parts, the new rectangle becomes the closest rectangle to its left. This can be

done in O (t) time.

so
1 s1 Rectangle 1
2 $2 | Rectangle 2

s3
3 s4 Rectangle 3

4

5 s5 | Rectangle 5
s6 Rectangle 4

s7

sweep line
Figure 4. S0,S1, ..., 56,57 are the segments in the illumination tree at

the position of the sweep line. In parentheses are the rectangles

that illuminate each of the segments.

12

St il A A S A0 A A h AL A et e A e |

“dynamic'’ priority search tree. The priority search tree uses O (n) spaces to
represent n intervals using a balancing scheme as is done in working with AVL
trees {7|. Insertion and deletion of intervals can be done in O (log k) time, and

we can decide if a given interval intersects any of the intervals represented on the

tree in O (log k) time where £ <n is the number of nodes in the tree. In the
algorithm to find the connected components, the priority search tree is used to

represent the vertical intervals which are the intersections of the current sweep

i

line with the active rectangles.

PP

Figure 3. A priority search tree representing the intervals
(1,4),(2,4),(4,7),(0,7),(3,5).

The illuminator tree represents the vertical intervals which form a partition

of the sweep line, such that each interval is the projection of the left side of the

nearest rectangle to the left of the sweep line. See Figure 4. The illuminator tree
can be implemented as a balanced 2-3 tree [8] using O (n) space. Each node in

the tree represents, say, the bottom endpoint of the corresponding segment.

When a rectangle ends, there is no change in the illuminator tree. But when a

- - - - - . . - . - - . - - - - - - . - 7 N N N - . = et et :] y

. O TP Y .t P I LTS ST . R SN TN

et e e e e e T e At T e e e e e T e e T e T T AT A T e et e e e e e e e e e e et)T
e A AT e e e T T T T S e e

4. Connected components

Given a set of n rectilinear rectangles, the connected components of the
region covered by the rectangles can be determined in time O (n log n) and
space O(n) [6]. The connected components are specified by lists of rectangles
where the rectangles in each list belong to the same connected region. The algo-
rithm in [6] uses the line sweeping method and it works in two phases. The first
phase produces a list of pairs of rectangles which belong to the same connected
component. The second phase traverses the graph defined this pair list to obtain
a list of rectangles for each component.

The first phase of the algorithm uses two data structures, the priority search

tree [7] and the illuminator tree.
A priority search tree T(a, b, c) can be defined as a binary tree such that
T hasaroot v with L (v)=a, R(v)=b and P(v)=c:if |R(v)-L(v)|>1, v

(+R

has a leftson T (L (v), | _j d) where ¢ <d: and v has a rightson

b}

(L-liﬂ}—l%-ﬂﬂj, R (v), d') where ¢ <d'. Thus the T (L (root), R (root)) is a

segment tree as defined in Section 2, and the P (v)'s satisfy the properties of a
priority queue. This priority search tree represents a set of n intervals
(5.€0). (s, .e,) where 5, <e;, and the s, s are distinct. The values of the
s,’s are used to build a segment tree T (a,bd)(a = minimum of the s, s,

= maximum of the s, 's +1), and each interval is associated with a tree node v
such thet L (v)<s <R(v)and P(v)=e,. See Figure 3. [6] also discusses how

the constraints of distinet s values may be removed and how to create a

10

V\V.Wv"'.v.

. ot

L]
]
.

- " T —— T ew P TN T —p——

2. Initialize « list L to be empty. In general, L 1is an ordered list
(!1, s, ..., {;) in increasing order. It represents the y-coordinates of all

the horizontal edges which intersect the vertical sweepline.

3. ForS:=1tom do
begin
let y, < y, < -+ < y; be the coordinates of the vertices
with r-coordinate u,;
for:: =1to k do

y I = y; for some

if y; is already in L, i.e.
then delete [; from L, since this signifies the righthand end
of a horizontal edge
else insert y; into L ;

after all the y,'s are properly inserted, L = ({|, . . ., la)

for 1: = 1 to 2¢ by step 2
Output rectangle {; L .|| X [u; u;.] i.e., rectangles with vertical
edges [; to [;,, and horizontal edges u, to u, . ;

end.

The above algorithm uses a vertical sweep line going from left to right. The
sweep line stops at each vertical edge, finds all the horizontal edges it crosses and
ontputs rectangles of width = next stop position - current stop position. If there
are n vertices on the contours, the time complexity of the algorithm is

O(nlogn + n-h) where A = the maximum number of horizontal edges any

vertical line crosses; A can be as large as n in the worst case. The number of

- E L T L e I S . T T e =
P DT Y I Wi Wy YN VDI AP WGP Pl G WM P Tar Uil (AT SR T, TP TN TH0! WA Wl W T Py 10, WS, W W WL W . 5.

S i ol f

A A el S A SO AR A AN SOt e TR AT DO R it A e AN A et e R MR NSt |

rectangles produced is also O (n-h). Figure 9 shows that a long rectangle could
be cut (unnecessarily) into many small rectangles by this algorithm since all rec-
tangles output are of width u, ., - u;. Also at each u;, the entire list L is exam-
ined.

The following algorithm uses the same basic principle as the one above, but
an element of L is examined only if it is being deleted (the righthand end of a

horizontal edge) or if some new horizontal edges are being inserted next to it. A

]
-~

[N —
—— e e o =
P
- o ——
[P ——

.

-___..
—— o v
- ——
[P —
———-—ﬁ
PRI —
R —
—-—————

- —————

- - -
PR
R —

——
[N S —
—_——
- —

Figure 9: The long smooth borizontal rectangle in the middle of the E is cut
into many small rectangles.

rectangle is output when it can no longer be extended to the right because of the
presence of a corner or some other vertical edge. In this algorithm, the endpoints
of a horizontal edge need to know the direction of the edge (— or —, using the
convention that clockwise is outer boundary, counterclockwise is a hole) and each
l; of L must also record the direction and a value z-tag which indicates the left-
most position of the edge which has not been included in any of the rectangles

output so far.

Each vertex v = (z, y) of the boundary determines dir (z, y), the direction

of the horizontal edge at the vertex (its value is either — or —).

The vertices are sorted in increasing (r,y) order. Let
vy <uy < - <wu, be the distinct =zr-coordinates. For each
g, (1< s < m) let y,) < y,0< - <y, bethe y-coordinates of the

vertices with z -coordinates u, .

Lisalist ({, l5,..., ls)suchthat | = (Y -val. D, X-tag). L is ini-
tialized to [(y ;. dir(uy yyy), wy) o0 (Yyk, dir(uy, ¥y,)ouy)) -
For S: =2to m do

(* At each sweepline position, examine each corner of the boundary hav-
ing this r value *)
for t:=1 to k, do

if no element in L has Y-val = y, ,

then (* the beginning of a new horizontal edge *)

begin

|
let ¢ = (ya R dir (u.s v Ys it)’ Ug)
2
I if a is to be inserted between [, and [, for some
- 1 <i < last
oo then (* ¢ is not new first element or last element of L *)

(x look at l; and [; .| *)
begin
if [.D =«and!;,;. D =— and [} X-tag
= ;.. X-tag < u, then output [[;. Y-val,
L 1. Y-val] X [; X~tag, u,],
and set {; .X -tag and l,»+l..Y—taé to u, .
end;
insert a in L
end
else (* an element [, in L has Y -val = y, ,, i.e., the end of a hor-
izontal edge in L *)
begin
suppose IJ- .Y —val = y, ,; then we need to look at
li_y orl;.) to determine the rectangle to output.
if dir (g, yy) = —
then output [/;_,.Y-val, y,] X [l;. X -tag.u,]
and set [; ;. X -tag to u,
else (+ dir (u,, g) = — *)

output [y, .l . Y-val] X [[;. X -tag. u,|

27

and set /; ;. X -tag to u,;
delete lj from L.

end

Using this algorithm, the middle rectangle of the E in Figure 9 will not be
cut up into small pieces. The number of rectangles reported is O (n) where n is
the number of corners in the boundary, since every rectangle has at least one
boundary vertex on one of its edges. The vime complexity of this algorithm is
O (n log n + nt) where t is the time for inserting or deleting an element of L.
If L is implemented as a balanced binary search tree, insertion and deletion take
O (log h) where b < n is the maximum number of edges a vertical sweepline
can cross. We can also doubly link the elements of L in increasing order to allow

easy access to the immediate neighbors. Therefore the time complexity of this

algorithm is O (n log n) since h < n.

'- 7.2. Run length codes

Given a set of rectangles we can obtain its run length code by reporting the
active segments on each row as runs of 1s and the inactive segments as runs of
Os. We assume that the vertices of the n rectangles are sorted on the key (y.r).
We also assume that the rectangles are all contained within a bounding frame
starting at z-coordinate M and extending up to z-coordinate V. The vertical

dimension of the frame may be taken to be the vertical span of the set of rectan-

gles itself. We pass a horizontal sweep line from top to bottom.

28

-
‘e . L S T T S S S S e, s o S R T L S
TRT R AT P U WA

Let L be a sorted list of nodes, each representing a horizontal segment.

Each node has fields LEFT and RIGHT for the left and right ends of the seg-
ments, and a COUNT field to represent the number of times a given portion of
the r-axis was covered by segments. LINK is the pointer to the next node on L.
Let y; > yo > - - y; be the list of distinct y-coordinates.
for ::=1to k do:
begin
let [, {,, ..., l; be the horizontal segments with y -coordinate y, .
for a:=1toj do:
| begin
if {, is the top end of some rectangle then
begin COUNT1 —~ 0; P « start of L :

output a run of Os of length LEFT(P)- M + 1;

L repeat
COUNT1 «~ COUNT1 + RIGHT(P) - LEFT(P) +
1;
if RIGHT(P) = LEFT(LINK(P)) then (« continue
run *)
P — LINK (P)
else begin output a run of 1s of length COUNT1
if LINK(P) = nil then output a run of Os

of length .V - RIGHT(P) + 1

else output a run of Os of length

Padiy Padiain dante s onedban ol S Siate iase Mhte Saste e St £) i - - S Ao it] s 3 - —r— ~ A=
ARt g P it Rot ARt Sas S T Ry el Y i o DAL S Sl Sunnt A’} ARy Sl i A & A At gl A

.........................

LEFT(LINK(P) - RIGHT(P) + 1;
P «~ LINK(P); COUNT1 « 0
end
until the proper place is found for {; on the sorted list L
(i.e., I, lies between two nodes of L).

One of the following cases must hold:

Case 1: I, is covered entirely by some segments on L:
Split those segments into parts covering [, and
parts not covering !,. Increment the COUNT
field of the first nodes by 1.

Case 2: I, is partially covered: Split the segments into
parts covering /, and parts not covering [, . Insert
that part of {; not covered, into L and increment

the COUNT fields of the covered parts.

Case 3: 1, is not covered: Insert !, with a COUNT of 1.

end (* if [, is top end *)

E' else (x [, is a bottom end *)
[begin
5

Scan the list L as before, in the if part, output-

ting runs of Os and ls, but decrement the

COUNT fields of all segments contained in {, by
- 1. Delete those segments whose COUNT becomes

E:; 0.

end
end (* for each a *)

end (* for each 1 *)

In this way, we get the run length code of all those rows y;,1 < ¢ < £ on
which a horizontal line of some rectangle is incident. There are O (n) stopping
points of the horizontal sweep, and the list L can contain O (n) nodes, because
there can be O (n) distinct vertical coordinates. The time complexity is O (n?).
The run length code of any other row is the same as that of the preceding row.

To convert run length code representation to union-of-rectangles, we main-
tain a list L of nodes represeﬂting rectangles. Each node has a ‘“‘rowspread’ field
and a ‘‘columnspread’ field. The rowspread field indicates that the rectangle
specified by that node spans the two rows specified in this field. The
columnspread field indicates that the rectangle specified by that node spans the
two columns specified in this field.

Initially, L is empty.
For each row of the run length code do:

Let the run be a,0s,a,15,a30s5,a,1s,..., @o0,_10s,a,, 1s.

@2n+1 05

Let current position on list L be the start of list L

For each run of 1s in this row do:
Scan through L starting from the current position until a node ! is
found whose columnspread intersects the columnspread of the current

run of 1s. Output rectangles corresponding to all nodes before [.

31

.
‘‘‘‘‘‘ P L. Lt et - - R S S
o \.\ h] et ™ -‘ ‘e .') ,' RIS _'.'_'_‘ . et T e e e Tt et e e e e e -

" e PR AP TR . Y
\)!j_.p;p \ \.\-‘n- AT AL LWL N PRI AP S W R AP R SN 4 n‘ IA-' £ 1;1’ l-l’. (.J-f 'J

-4

DLANERCEL R S S o g s v AL areg gl R e DU WYL g L M gt i st etd AAar R MUTINE- N - e T T T

« %4

L
Let columnspread (!) = ¢, ¢,.
I Let columnspread of current run of 1s = d,, d,.

case l: ¢y =d, cy=dgy

case 2.' Cl = dl’ dl > d2:

(AN

case 3: ¢, =Cq, do > d:

P KRN

case §: ¢ < cq, d) = dy:

I WASIURI LR) RS

-“,"g‘.' R

-9
P AL

L

LR JE PR e
e .
ChChel R AR

R

increase rowspread of [

split ! by increasing its rowspread by 1

and making the columnspread run till d,.
Output a rectangle with rowspread equal
to that of [previously and columnspread
from d, to c,.

increment rowspread of [and append a
new node after !, whose columnspread is
from d, to the end of the current run of
1s.

split ! by incrementing its rowspread, and
changing its columnspread to start from
d,. Output a rectangle with rowspread the
same as that of [and columnspread from

c,tod,.

case 5. ¢ < d, < ¢y < d, split ! by incrementing its rowspread.

and changing its columnspread to
d, - ca. Output a rectangle with the old
rowspread of [a.d columnspread from
c,tod,. Append a node after [with

columnspread from ¢, to d,.

32

........

Tt D R
IS . L
.....

A IR ORI I I S R S S S AP A AL A T T T S SR U T T A e T L It SRR <.
ad el sl LI WSLIPS WS, WERIFSAT BTG VO VA PL PR PG PP Sy sy Iabhatalde l hadedead adadale So e B doo e ine ot

A o
PRSP .

N T N T T L T W mw g TTT———— ..‘ e T v vy "";‘.".‘.-,-.-.‘T*T.

case 6: d, < ¢; < dy < ¢y split [by incrementing the rowspread,
and changing its columnspread to
¢; - dy. Output a rectangle with old
rowspread of ! and columnspread from
dyto cy. Append a node before ! with
columnspread d, to ¢ .

case 7. ¢, < d, < dy < cq: split [by incrementing its rowspread,
and changing the columnspread to
d, - dy. Output two rectangles with

columnspread equal to the previous value

of | and rowspread from ¢, to d,, and
d,to co.

case 8 d, < ¢; < ¢y < dy: split ! by incrementing its rowspread,
and appending two‘nodes, one before and
one after !, with columnspreads 4 to ¢,

and ¢4 to d,.

The rectangles we output may be degenerate ones, i.e., a single point or a
single line. This may be avoided by increasing the resolution so that single pixels
become rectangles with non-empty interior. The number of rectangles is bounded
by the number of corners in the contour of the region, which is < the number of
runs of 1s. In the worst case, the time complexity is O (image size) when the

image is a checkboard.

33

- . . - - -« . . - - .o et . L) - A T T et et et ettt A T .t . - - P Y

PR et et e T et o Tt e Tt Tt Tt Tt Tt Tt et Tet Tt e LTI S e B e O ‘- Sov e

e e et
e e T 2N i i i, E

8. Concluding Remarks

The algorithms in this note all use the line sweep method and the segment
tree or its variants as the supporting data structure. They are time optimal algo-
rithms: O(n log n +p) for the contour of a union of n rectilinear rectangles,
where p is the number of contour pieces; O (n log n) for the connected com-

ponents, area, centroid and moments.

These time and space efficient algorithms can be useful in image processing
because the medial axis transform of a region is a set of rectilinear squares. They
show that geometric properties can be obtained from the MAT quite efficiently.
Moreover, often regions can be covered by a lot fewer rectangles {10] than the
number of squares in a MAT. Thus a set of rectangles is a useful compact

representation of regions.

The problems we considered in Sections 3-5 can also be solved using divide
and conquer methods {11]. These algorithms divide the plane into frames which
are vertical strips between two vertical lines (as defined by the vertical edges of
rectangles). Then the problem is solved for each of the frames. Some informa-
tion which allows the merging of the solutions is also calculated. Finally the
solutions for the subproblems are merged. The performance of the divide and

conquer algorithms matches those of the line sweeping method.

A set of rectilinear rectangles can be obtained from other representations of

regions and from performing set-theoretic operations on given MATs.

34

.............
..................

I R R N T T T T T T A o T T i o R v

References

[1] H. Blum, “A transformation for extracting new descriptors of shape’, Models
for Perception of Speech and Visual Form, W. Wathen-Dunn, Ed., Cam-
bridge, MA: MIT Press, 1967, 362-380.

[2] A. Rosenfeld and A.C. Kak, Digital Picture Processing, Second Edition, Vol.
2, Chapter 11, NY: Academic Press, 1980.

[3] J.L. Bentley, Solutions to Klee's rectangle probelms, Department of Com-
puter Science, Carnegie-Mellon University, 1977.

[4] W. Lipski and F.P. Preparata, “Finding the contour of a union of iso-
oriente ! rectangles’”, J. Algorithms 1, 1980, 235-246 and J. Algorithms 3,
1982, 301-302.

[5] R.H. Giiting, “‘An optimal contour algorithm for iso-oriented rectangles"”, J.
Algorithms 5, 1984, 303-326.

[6] L. Guibas and J. Saxe, “Solution to <Problem 80—15>”, J. Algorithms 4,
1983, 177-181.

(7] E.M. McCreight, “Priority Search Trees”, Xerox PARC Research Report
CSL-81-5, 1982.

[8] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Com-
puter Algorithms, Reading, MA: Addison Wesley, 1974.

[9] J. van Leeuwen and D. Wood, *“The measure probelm for rectangular ranges

in d-space’’, J. Algorithms 2, 1981, 282-300.

35

(10] D.S. Franzblau and D.J. Kleitman, ‘““An algorithm for constructing regions
with rectangles’, Proc. Sizteenth ACM STOC, 1984, 167-174.

[11] R.H. Giiting, *‘Optimal divide and conquer to compute measure and contour
for a set of iso-rectangles’’, Acta Informatica 21, 1984, 271-291.

(12] N. Ahuja and W. Hoff, ‘‘Augmented medial axis transform’’, Proc. Workshop

on Computer Vision: Representation and Control, 1984, 251-256.

36

et NS TR T AT ST Ty STy Ty Ty oy - P -
‘nclassified

——

RITY CLASSIFICATION OF THIS PAGE
REPORT DOCUMENTATION PAGE /) 5 ﬁ 158553 z/

{EPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

nclassified N/A

ECLURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for public release; distribution
YJECLASSIFICATION/OOWNGRADING SCHEDULE unlimited

N/A

AFOAMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER!(S)
CAR-TR-122

CS-TR-1497 N/A _

JAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

(1! applicabdie) 3 i . .
Air Force Office of Scientific Research

University of Marvland N/A
TR “ - . A ZIP Code)) 7b. ADDRESS (City State and Z{P Code)
Center for Automation Research
College Park, MD 20742 Bolling Air Force Base
8 ’ Washington, DC 20332
NaAME OF FUNDING. SPONSQRING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENMTIFICATION NUMBER
TNIZATION (1f applicodie!
F49620-83-C-0082
» DORAESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TasSK WORK UNIT
ELEMENT NO. NO NO. NO
] S Claasificat] .
mohb v e g St properties from the
dia: axis transform in O(n loen) time
PERSONAL AUTHORIS)
Zela Y. Wu, S. K. Bhaskar, Azriel Rosenfeld —— = P
-~ 130 1IME COVEREDN /5 14. DATE OF REPORT (Yr, Mo.. Day, 13 PAGE CUNT
anical EROM TO June 1985 37
STl Y NTAD JTATION
COSAT!I CODES 18. SUBJECT TERMS /Continue on reverse if necessory and identify by dlock numbder)
€10 GAOUP sug8. GA.

ABSTRACT (Continue on reverse (f necessary end identify dy block numbder,

The digital medial axis transform (MAT) represents an image subset S as the union
I maximal upright squares contained in S. Brute-force algorithms for computing geometric

roperties of S from its MAT require time O (nz), where n is the number of squares. Over
he past few vears, however, algorithms have been developed that compute properties for a

nion of upright retangles in time 0 (n logn), which makes the use of the MAT much more
ttractive. Ve review these algorithms and also present efficient algorithms for computing
nion-nof-retangle representations of derived sets (union, intersection, complement) and

2r conversion between the union of rectangles and other representations of a subset,

OISTRIBUTION/AVAILABILITY OF ABSTRACT 2. ASBSTRACT SECURITY CLASSIFICATION
cLASSIFIED/UNLIMITED @ same as apr. 0 oTic usens O Unclassified
| S 3ME OF RESPONSIBLE INDIVIDUAL 225 TELEPHONE NUMBER 22c OFF~E SYMBOL

{Include Area Code:

_J

' FORM 1473, 83 APR €OITION OF 1 JAN 73 1S OBSOLETE. Ine Lacaifiond

SECURITY CLASSIFICATION OF TmiS PAGE

Yottt I)
RSN Sl IR IO

- N s '-—"“‘\'-‘—(i LRALASS S e are 8w e e 4
L . . Ay ®

B S T A Y ~ TN

END

NI IRAS DI S A CRAMALE T 2t eerings Aagn 4
).‘,‘_-.-_h»..u_fn - At it

. FILMED

. 10-85

